
Sample Answers "Sine" Language A Solidify Understanding Task

In the previous task, *George W. Ferris' Day Off*, you probably found Carlos' height at different positions on the Ferris wheel using right triangles, as illustrated in the following diagram.

©2014 www.flickr.com/photos/nicholaslaughlin

Recall the following facts from the previous task.

- The Ferris wheel has a radius of 25 feet
- The center of the Ferris wheel is 30 feet above the ground

Carlos has also been carefully timing the rotation of the wheel and has observed the following additional fact.

- The Ferris wheel makes one complete rotation counterclockwise every 20 seconds.
- 1. How high will Carlos be 2 seconds after passing position A on the diagram?

2. Calculate the height of a rider at each of the following times t, where t represents the number of seconds since the rider passed position A on the diagram. Keep track of any patterns you notice in the ways you calculate the height. As you calculate each height, plot the position on the diagram.

Elapsed Time Since Passing Position A	Position on the Ferris Wheel	Calculations	Height of the Rider
2 sec	8	25sin 36°+30	44.6946
4 sec	C	25 sin 72° +30	53.7764'
6 sec	D	25 sin 72°+30	53,7764
8 sec	E	25 sin 36°+30	44.6946
10 sec	F	2254 57064 1534 0	30'
12 sec	6	-25sin36°+30	15,3054
14 sec	++	-255in 72°+30	6.2236'
16 sec	1	-25sin 72°+30	6.2236
18 sec	T	-25sin 36°+30	4 30 15.3054
20 sec	A	2 Schellego Fixtent Loo	30'
22 sec	В	25 s ln 36°+30	44,6946
24 sec	C	25 5/22°+30	53.7%4
26 sec	D	255in 72°+30	53.7764
28 sec	VE	25sin36°+30	44.6946

30 sec	F 25 sin 0°	30'
32 sec	G -25 sin 36°+30	15.3054
34 sec	H -25 sin 72° + 30	6.2236
36 sec	I -25 sin 72°+30	6.2236
38 sec	J -25 sin 36° + 30	15.3054
40 sec	A 2	30'
42 sec	B 25sin 36° + 30	44.6946
44 sec	C 25 sin 72° +30	53.7%

3. Examine your calculations for finding the height of the rider during the first 5 seconds after passing position A (the first two values in the above table). During this time, the angle of rotation of the rider is somewhere between 0° and 90°. Write a general formula for finding the height of the rider during this time interval.

 $A(t) = 25 \sin(8t) + 30$

4. How might you find the height of the rider in other "quadrants" of the Ferris wheel, when the angle of rotation is greater than 90°?

Use the symmetries of the circle.

Common come called the considerabilities the height of the relate three three three three to be a first or manufacture of the common three three

and reader the barrier of the Commission of the reader results of the Purple of the Description of the Commission of the

Visit resident ministry entirementally sitt most because VIV