\qquad
Directions: Determine the stated characteristics for this graph. Carefully draw the graph on the grid below.

Graph:

$$
f(x)=\left\{\begin{array}{cc}
-x-8, & {[-9,-3]} \\
-x^{2}+4, & {[-3,3]} \\
x, & (3,7]
\end{array}\right.
$$

1. Is it a function? Yes Passes vertical line test.
2. Is the inverse a function? No Fails horizontal line test.
3. Domain: $[-9,7]$
4. Range: [-5,7]

5. x-intercept(s): $\{-8,-2,2\}$
6. Find y when $x=3 .-5$
7. y-intercept(s): $\{4\}$
8. For what x-value(s) is $y=3 ?\{-1,1\}$
9. Where is the graph increasing?
$[-3,0] \cup(3,7]$
10. Maximum value of graph: 7
(absolute maximum)
11. Where is the graph decreasing?
$[-9,-3] \cup[0,3]$
12. Minimum value of graph: -5
(absolute minimum)
13. Where is the graph negative?
$(-8,-2) \cup(2,3]$
14. Where is the graph positive?
$[-9,-8) \cup(-2,2) \cup(3,7]$
15. Where is $y=0$? $\{-8,-2,2\}$
16. Relative maximum at $x=$ \qquad .

Assuming $y=f(x)$:
18. As $x \rightarrow 7, f(x) \rightarrow$ \qquad 7 \qquad
As $x \rightarrow-9, f(x) \rightarrow 1_{-}$ \qquad
12. Symmetry: Overall - none. Symmetric with y-axis on $[-3,3]$
19. Name given to this graph:

Piecewise-defined Function

