Graphing Rational Functions

Name_____ANSWERS

- **1.** Given the rational expressions: $\frac{x^2 9}{x 3}$ and x + 3
- a) Complete the table at the right.
- **b**) Simplify the expression: $\frac{x^2 9}{x 3} = \frac{(x + 3)(x 3)}{(x 3)} = x + 3$
- c) Graph.

x	$\frac{x^2-9}{x-3}$	<i>x</i> +3
-2	1	1
0	3	3
1	4	4
3	undefined	6
4	7	7
9	12	12

d) Graph g(x) = x + 3.

e) Based upon your findings, would you say that $\frac{x^2-9}{x-3}$ is equivalent to x+3? Explain.

No. While the first expressions can be simplified algebraically to produce the second expressions, the expressions are not entirely equivalent. The first expression is undefined when x = 3, which is not a restriction needed on the second expression.

- **2.** Given $g(x) = \frac{x+1}{x-1}$.
- **a**) Find the *x*-intercept(s). Set x + 1 = 0. x = -1 or (-1,0)
- **b**) Find the *y*-intercept. Set x = 0. (0,-1)
- c) State the domain of g(x). All Real {-1}
- **d**) Graph *g* (*x*).

- **3.** Given $f(x) = \frac{6x-2}{3x+4}$.
- **a**) Find the *x*-intercept. x = 1/3 or (1/3,0)
- **b**) Find the *y*-intercept. (0,-1/2)
- c) Draw a vertical dotted line at the *x*-value where the function is undefined, and state the equation of the line. x = -4/3
- **d**) Graph f(x).
- e) There is a horizontal line (asymptote) which this graph approaches. What is its equation? y = 2
- f) State the end behavior as $x \to \infty$. $f(x) \to 2$
- g) State the end behavior as $x \to -\infty$. $f(x) \to 2$

- 4. Given $h(x) = \frac{2x+1}{x^2 2x 15}$.
- **a**) Find the *x*-intercept. x = -1/2 or (-1/2,0)
- **b**) Find the *y*-intercept. (0, -1/15)
- c) Draw a vertical dotted line at the *x*-value(s) where the function is undefined, and state the equation(s) of the line(s).
 x = -3, x = 5
- **d**) Graph f(x).
- e) There is a horizontal line (asymptote) which this graph approaches. What is its equation? y = 0
- **f**) State the end behavior as $x \to \infty$. $f(x) \to 0$
- g) State the end behavior as $x \to -\infty$. $f(x) \to 0$
- **5.** Which rational function has end behavior as $x \to \infty$, $f(x) \to 1$ and as $x \to -\infty$, $f(x) \to 1$?

1)
$$f(x) = \frac{1}{x+2}$$
 2) $g(x) = \frac{x^2 - 1}{x-1}$ 3) $h(x) = \frac{x+2}{x-3}$ 4) $r(x) = \frac{x-2}{x^2 - 3x - 4}$