Graphing Rational Functions

Name \qquad
ANSWERS

1. Given the rational expressions: $\frac{x^{2}-9}{x-3}$ and $x+3$
a) Complete the table at the right.
b) Simplify the expression: $\frac{x^{2}-9}{x-3} \frac{(x+3)(x-3)}{(x-3)}=x+3$

x	$\frac{x^{2}-9}{x-3}$	$x+3$
-2	1	1
0	3	3
1	4	4
3	undefined	6
4	7	7
9	12	12

c) Graph .

State the domain: $\quad x \neq 3$

d) Graph $g(x)=x+3$.

State the domain: All Reals

e) Based upon your findings, would you say that $\frac{x^{2}-9}{x-3}$ is equivalent to $x+3$? Explain.

No. While the first expressions can be simplified algebraically to produce the second expressions, the expressions are not entirely equivalent. The first expression is undefined when $x=3$, which is not a restriction needed on the second expression.
2. Given $g(x)=\frac{x+1}{x-1}$.
a) Find the x-intercept(s). Set $x+1=0 . \quad x=-1$ or $(-1,0)$
b) Find the y-intercept. Set $x=0 . \quad(0,-1)$
c) State the domain of $g(x)$. All Real $-\{-1\}$
d) Graph $g(x)$.

3. Given $f(x)=\frac{6 x-2}{3 x+4}$.
a) Find the x-intercept. $x=1 / 3$ or $(1 / 3,0)$
b) Find the y-intercept. $(0,-1 / 2)$
c) Draw a vertical dotted line at the x-value where the function is undefined, and state the equation of the line. $x=-4 / 3$
d) $\operatorname{Graph} f(x)$.
e) There is a horizontal line (asymptote) which this graph approaches. What is its equation? $y=2$

f) State the end behavior as $x \rightarrow \infty . \quad f(x) \rightarrow 2$
g) State the end behavior as $x \rightarrow-\infty . \quad f(x) \rightarrow 2$
4. Given $h(x)=\frac{2 x+1}{x^{2}-2 x-15}$.
a) Find the x-intercept. $x=-1 / 2$ or $(-1 / 2,0)$
b) Find the y-intercept. ($0,-1 / 15$)
c) Draw a vertical dotted line at the x-value(s) where the function is undefined, and state the equation(s) of the line(s). $x=-3, \quad x=5$
d) Graph $f(x)$.
e) There is a horizontal line (asymptote) which this graph approaches. What is its equation? $y=0$
f) State the end behavior as $x \rightarrow \infty . \quad f(x) \rightarrow 0$

g) State the end behavior as $x \rightarrow-\infty . \quad f(x) \rightarrow 0$
5. Which rational function has end behavior as $x \rightarrow \infty, f(x) \rightarrow 1$ and as $x \rightarrow-\infty, f(x) \rightarrow 1$?

1) $f(x)=\frac{1}{x+2}$
2) $g(x)=\frac{x^{2}-1}{x-1}$
3) $h(x)=\frac{x+2}{x-3}$
4) $r(x)=\frac{x-2}{x^{2}-3 x-4}$
